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This work proposes the use of the treatment referred to asfuzzy atomsto describe three-center bond indices
within studies of electron population analysis. A simple manipulation of our algorithms reported previously
for describing multicenter bondings enables us to introduce this methodology in our mathematical framework,
providing suitable numerical determinations of three-center bond indices, two-center bond ones, and electron
atomic populations. The results, obtained in selected systems, are discussed and compared to those arising
from other procedures of population analysis.

1. Introduction

The studies of population analysis have proven to be powerful
procedures for describing chemical bondings in molecules,
avoiding the use of theN-electron wave functions that are always
cumbersome. Classical concepts such as atomic charges, bond
order indices (multiplicity), valences, free-valence indices, and
so forth, which are of paramount importance for chemists, have
been evaluated according to these methods, and the results show
a good agreement with the genuine chemical knowledge. As is
well-known, the studies of population analysis carry out a
partitioning of theN electrons of the system into different
contributions that are assigned to atoms, atomic regions, or
groups of atoms (bonding regions), allowing one to describe
conventional two-center bondings and more complex bonding
patterns featured in determined molecules (multicenter bond-
ings). The techniques of population analysis are classified within
two different approaches according to the space where the
analyses are performed (Hilbert space or physical space).
Besides the most widely used Mulliken-type treatments, which
deal with atomic functions centered at various sites in the
molecule,1,2 there are also other avenues of the Hilbert space
analyses, for example, the Weinhold’s natural population
analyses, which deal with natural (in the Lo¨wdin sense) orbitals.3

In the alternative approach, the analyses are performed in the
3D space where the molecule is situated. The most important
treatment in the 3D space analysis is the topological theory of
atoms in molecules (AIM) of Bader, in which theN electrons
are assigned to disjunct regions (or domains) of the physical
space bounded by surfaces of zero flux in the gradient vector
field of the electron density.4-7

The applicability of Mulliken-type procedures is limited to
the use of basis sets whose functions have an atomic character,
otherwise the understanding of their results is quite difficult.8,9

The AIM theory is regarded as more realistic in describing

chemical features by virtue of its physical grounds. However,
it also presents some disadvantages related with its high
computational cost. Another minor drawback is the fact that in
some systems the surfaces of zero flux define nonnuclear
attractor regions that cannot be directly related to any meaningful
atomic region.10-12 An alternative scheme of physical space
decomposition is based on the use of fuzzy atoms, that is, a
division of the 3D space into atomic regions that have no sharp
boundaries but show a continuous transition from one to
another.13-16 This approach might be appropriate for describing
atomic spatial regions with shared electrons, in agreement with
the concept of chemical bonding.17 Recently, the fuzzy atom
procedure has been applied successfully to describe two-center
bond orders and other related quantities from population
analysis.18,19The aim of this paper is to extend the applications
of the fuzzy atom treatment by studying its ability to describe
multicenter bond indices, particularly the three-center ones. To
achieve this goal, we have introduced the formalism of the fuzzy
atom scheme into the mathematical framework of our previous
reported studies on multicenter bondings,20 which have been
limited to Mulliken-type and topological approaches so far.

The article is organized as follows. The second section
describes the theoretical aspects of the population analysis and
their relationships with the fuzzy atom formulation. In the third
section, we report the computational details and the results
obtained in selected systems as well as a comparison to those
arising from other procedures. Finally, the last section sum-
marizes the concluding remarks.

2. Theoretical Aspects

We will refer to an N-electron system described by a
determined wave function,Ψ. As is well-known, the matrix
elements of the spin-free first-order reduced density matrix
corresponding to that state are
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and, similarly, the spin-free first-order hole reduced density
matrix elements are

wherei, j, k, l,... constitute a set of orthonormal orbitals,ciσ
† /cjσ

are the standard creation/annihilation fermion operators, andσ
is the spin coordinate (R or â).

The number of electrons of the system,N, can be expressed
as

The substitution of the Kronecker deltas by the well-known
relation

which is a consequence of fermion operator anticommutation
rules, leads to

where the matrix elementsuj
i are defined as

This matrix is known as theeffectiVely unpaired electron matrix
and its trace (Nu ) ∑i ui

i) is the number of odd electrons in
open shell systems plus the partial split of electron pairs that
appears when correlation is taken into account (even in closed
shell systems).21-26

Taking into account eq 6, another substitution of the Kro-
necker deltas in eq 5 leads to

This equation has been reported and used successfully in ref
20 as a starting point for developing algorithms for performing
Mulliken-type and topological-type population analyses. The
last term of this equation evaluates the number of effectively
unpaired electrons,23,24,26whereas the terms in the brackets are
related to the rest of electrons in the system. The third-order
terms 1Dj

i 1Dk
j 1Di

k have proven to be useful particularly in
detecting the presence of three-center bondings in systems that
possess this feature.

Equation 7 can be reformulated in terms of new Kronecker
deltas whose substitution according to eq 4 leads to a partitioning
of quantityN in higher-order terms, as was reported in ref 27.
However, as has been mentioned in the Introduction, the main
aim of this paper is to study the capacity of the fuzzy atom
procedure for describing three-center bond indices. Hence, to
adapt eq 7 to physical space population analysis schemes, we
propose to rewrite this equation as

According to the fuzzy atom approach, a nonnegative
continuous weight function,wA, is introduced for each atom,
A. These weight functions measure the degree in which a given
point of space,r, is considered to belong to atomA, fulfilling
the conditions

Consequently, there are not any sharp boundaries between the
atomic regionsA, B, ... but a continuous transition from one to
another. Obviously, the AIM formalism can be regarded as a
particular case of the fuzzy atom approach in which all of the
wA(r) values are zero or one.

Equation 10 lets us rewrite the Kronecker deltas as

The substitution of these deltas in eq 8 allows one to perform
the following partitioning based on the fuzzy atom approach

in which

whereP(ABC) means the permutationsABC, ACB, and so forth.
Quantities∆A, ∆AB, and∆ABC are the electronic populations

associated to one center and the bonding populations related to
two and three centers, respectively, within our fuzzy atom
treatment, whereas theuA one represents the population of the
effectively unpaired electrons related with the atom,A, in that
approach. According to the heuristic definitions of bond
indices,28,29 the expression for the two-center bond index,IAB,
in a fuzzy atom version has been reported in ref 18 as

Similarly, the corresponding version of three-center index,IABC,
can straightforwardly be formulated as
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Equations 15 and 18 establish a simple relationship between
three-center populations,∆ABC, and three-center bond indices,
IABC (∆ABC ) 1/4 ∑P(ABC) IABC). Counterpart formulas of∆A, uA,
∆AB, and∆ABC quantities in the Mulliken-type and AIM versions
as well as the results obtained from them were described in ref
20. In the following section, we report results arising from these
three treatments in order to compare and discuss the ability of
the fuzzy atom procedure for describing three-center bondings.

3. Results and Discussion

To perform test calculations within the above proposed fuzzy
atom scheme, we chose two series of selected systems according
to the expected presence (or absence) of three-center bondings.
These calculations have been carried out using a modified
Gaussian 9430 program, which generated the first-order reduced
density matrix elements. The values of the weight functions,
wA, and the numerical integration of theSj

i (A) expressions
have been determined with a modified version of the code cited
in ref 31, which follows a Becke integration scheme15 on the
basis of the weight functions originally proposed by this author.
These weight functions, which satisfy eqs 9 and 10, depend on
both the empirical Slater-Bragg atomic radii of the atoms
composing the system under study and an iteration order,k,
which defines the cutoff profiles of the functions. According
to ref 17, we have chosen the valuek ) 3 and increased the
radius of hydrogen to the value 0.35 Å. In a subsequent step,
the above proposed population analysis has been performed by
our own computational implementation. The obtained results
are reported in Tables 1-4. Counterpart results for the studied
systems within Mulliken and AIM population analysis schemes,
taken from ref 20, have also been included in these Tables for
the sake of comparison. All of the reported results have been
obtained with the 6-31G basis sets. For all systems, the
geometries have been optimized for these basis sets within
configuration interaction (CI) wave functions with single and
double excitations (SDCI).

The results in Tables 1 and 2 refer to systems in the ground
state, in which the existence of three-center bondings is well
known (H3

+, B2H6, allyl cation, allyl anion,CO2, andN3
-). The

numerical determinations found in theH3
+ cation turn out to

be quite similar for all of the quantities in the three methods;
this system is too simple to render any difference in the behavior
of these treatments. However, in theB2H6 molecule, the∆BHB,
∆BB, and ∆B populations present higher values in the fuzzy
method than in the Mulliken and AIM ones, which are
compensated for by the lower values of the∆H populations.
The diborane molecule has been considered as a typical example
of a system possessing three-center two-electron bondings; the
results arising from the fuzzy method clearly point to this feature
(∆BHB ) 0.366) and also provide a suitable value for the
conventional two-center bonding (IBH ) 0.908), which is in
agreement with the genuine chemical behavior of this system.
The allyl cation shows fewer differences between the AIM and
fuzzy atom procedures, but the lightly higher value of∆CCC )
0.366 (in fuzzy atoms) in comparison to∆CCC ) 0.342 (in AIM)
confirms that the former method is appropriate to detect three-
center bondings. In our opinion, the higher values found in the
fuzzy atom treatment may be explained by the fact that in this
approach there are no sharp boundaries between the different
atomic domains, which favors the notion of shared electrons
between the three nuclei. The negative character of the∆ABC

populations has been interpreted as the presence of three-center
four-electron bondings, whereas the positive ones describe three-
center two-electron bondings.29,32 This feature is also fulfilled

IABC ) ∑
i, j,k,l,m,n

1Dj
i 1Dl

k 1Dn
m Sk

j (A) Sm
l (B) Si

n(C) (18)

TABLE 1: Calculated Values of Bond Indices I AB and Populations∆AB, ∆ABC from Fuzzy Atom, Mulliken-Type (in
Parentheses) and AIM (in Brackets) Treatments for Systems with Three-Center Bondings in the SDCI Approximation

system bonding IAB ∆AB ∆ABC

H3
+ HH 0.427 (0.425) [0.427] 0.429 (0.428) [0.429]

HHH 0.419 (0.416) [0.418]
B2H6 BB 0.819 (0.465) [0.146] 0.779 (0.418) [0.064]

(BH)terminal 0.908 (0.947) [0.673] 1.320 (1.441) [0.936]
(BH)bridging 0.443 (0.434) [0.383] 0.447 (0.519) [0.426]
BHB 0.376 (0.303) [0.136]

allyl cation C1C2 1.454 (1.351) [1.395] 1.890 (1.929) [1.851]
C1H1 0.895 (0.894) [0.909] 1.282 (1.369) [1.321]
C2H2 0.887 (0.882) [0.903] 1.260 (1.339) [1.307]
CCC 0.366 (0.291) [0.342]

allyl anion C1C2 1.556 (1.430) [1.430] 2.236 (2.358) [2.132]
C1H1 0.974 (0.928) [0.980] 1.380 (1.427) [1.409]
C2H2 0.895 (0.933) [0.926] 1.258 (1.429) [1.326]
CCC -0.058 (-0.352) [-0.141]

CO2 CO 2.190 (1.784) [1.518] 3.402 (2.947) [2.387]
OO 0.300 (0.254) [0.370] 0.572 (0.650) [0.666]
OCO -0.242 (-0.537) [-0.224]

N3
- N1N2 2.123 (1.565) [1.930] 3.323 (2.780) [3.122]

N1N3 0.674 (0.687) [0.671] 1.150 (1.453) [1.231]
NNN -0.280 (-0.849) [-0.451]

TABLE 2: Calculated Values of Populations∆A, uA from
Fuzzy Atom, Mulliken-Type (in Parentheses) and AIM (in
Brackets) Treatments for Systems with Three-Center
Bondings in the SDCI Approximation

system fragment ∆A uA

H3
+ H 0.059 (0.061) [0.060] 0.039 (0.039) [0.039]

B2H6 B 2.697 (2.521) [2.032] 0.171 (0.162) [0.095]
Hterminal 0.162 (0.264) [0.680] 0.043 (0.044) [0.065]
Hbridging 0.081 (0.259) [0.521] 0.040 (0.048) [0.071]

allyl cation C1 2.978 (3.337) [3.040] 0.193 (0.205) [0.194]
C2 2.939 (3.210) [2.928] 0.201 (0.212) [0.198]
H1 0.121 (0.096) [0.128] 0.038 (0.033) [0.039]
H2 0.121 (0.086) [0.136] 0.039 (0.032) [0.040]

allyl anion C1 3.306 (3.599) [3.307] 0.199 (0.213) [0.201]
C2 2.900 (2.989) [2.894] 0.195 (0.199) [0.192]
H1 0.185 (0.249) [0.245] 0.044 (0.040) [0.046]
H2 0.181 (0.251) [0.260] 0.045 (0.042) [0.049]

CO2 C 2.670 (2.523) [2.123] 0.232 (0.216) [0.168]
O 5.723 (6.374) [6.969] 0.245 (0.253) [0.277]

N3
- N1 5.029 (5.381) [5.059] 0.309 (0.310) [0.308]

N2 3.548 (4.194) [3.978] 0.260 (0.259) [0.263]
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qualitatively in the fuzzy atom treatment as can be observed in
the allyl anion, theCO2 molecule, and the azide anion. TheuA

quantities, which represent the free valences of the atoms, are
detectable although they are low. Because all of the studied
systems are singlets, these unpaired electron populations are
due only to the partial splitting that arises from the dispersal of
the occupation numbers of the orbitals in the expansion on
several Slater determinants. The values obtained are similar in
the fuzzy atom treatment and in the Mulliken and AIM methods
in agreement with our previous determinations of this quan-
tity.24,33

Tables 3 and 4 report the results for systems in the ground
state that are appropriately described through conventional single
bonds, that is, only possessing bondings fitted in with the
classical two-center two-electron model (H2O, NH3, CH4, and
C2H6). The first conclusion that can be drawn out from these
results is that the fuzzy atom procedure leads to bond indices
IOH, INH, ICH (in both methane and ethane molecules), andICC

close to unity, which is in good agreement with the classical
chemical description of these systems. However, the three-center
contributions are negligible in the three methods showing the
lacking of this feature in these systems. Again, no significant
differences have been found for theuA quantity between the
three procedures.

4. Concluding Remarks

In conclusion, in this paper we have explored the ability of
the fuzzy atom scheme to describe three-center bondings. To
carry out this purpose, we have adapted the mathematical
framework of our previously reported studies of multicenter
bond indices to the fuzzy atom approach. The obtained
algorithms, which are valid at any level of theory, have been
applied at correlated level. The results found show that this
method also detects three-center two-electron bondings and
provides similar or higher values than those obtained within
the Mulliken and AIM procedures. Likewise, in qualitative

agreement with the more traditional techniques, the fuzzy atom
approach leads to negative values of three-center populations
in systems that present three-center four-electron bondings. In
systems that have only single bondings, the description of two-
center bond indices also turns out to be satisfactory because
this treatment provides indices closer to unity for the conven-
tional bonded atoms in most of the systems studied and
negligible values for three-center indices. These results and the
lower computational cost of the fuzzy atom approach in
comparion with the AIM treatment indicate that this methodol-
ogy can be used as a reliable and cost-competitive technique
within the studies of population analysis.
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